Probabilistic Diffusion Tractography Reveals Improvement of Structural Network in Musicians
نویسندگان
چکیده
PURPOSE Musicians experience a large amount of information transfer and integration of complex sensory, motor, and auditory processes when training and playing musical instruments. Therefore, musicians are a useful model in which to investigate neural adaptations in the brain. METHODS Here, based on diffusion-weighted imaging, probabilistic tractography was used to determine the architecture of white matter anatomical networks in musicians and non-musicians. Furthermore, the features of the white matter networks were analyzed using graph theory. RESULTS Small-world properties of the white matter network were observed in both groups. Compared with non-musicians, the musicians exhibited significantly increased connectivity strength in the left and right supplementary motor areas, the left calcarine fissure and surrounding cortex and the right caudate nucleus, as well as a significantly larger weighted clustering coefficient in the right olfactory cortex, the left medial superior frontal gyrus, the right gyrus rectus, the left lingual gyrus, the left supramarginal gyrus, and the right pallidum. Furthermore, there were differences in the node betweenness centrality in several regions. However, no significant differences in topological properties were observed at a global level. CONCLUSIONS We illustrated preliminary findings to extend the network level understanding of white matter plasticity in musicians who have had long-term musical training. These structural, network-based findings may indicate that musicians have enhanced information transmission efficiencies in local white matter networks that are related to musical training.
منابع مشابه
A Symmetry-Based Method to Infer Structural Brain Networks from Probabilistic Tractography Data
Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP) have provided brain research with an abundance of structural connectivity data. In this work, we describe and evaluate a method that can infer the structural brain network that interconnects a given set of Regions of Interest (ROIs) from probabilistic tractography data. The p...
متن کاملHuman cortical connectome reconstruction from diffusion weighted MRI: The effect of tractography algorithm
Reconstructing the macroscopic human cortical connectome by Diffusion Weighted Imaging (DWI) is a challenging research topic that has recently gained a lot of attention. In the present work, we investigate the effects of intra-voxel fiber direction modeling and tractography algorithm on derived structural network indices (e.g. density, small-worldness and global efficiency). The investigation i...
متن کاملReproducibility of the Structural Brain Connectome Derived from Diffusion Tensor Imaging
RATIONALE Disruptions of brain anatomical connectivity are believed to play a central role in several neurological and psychiatric illnesses. The structural brain connectome is typically derived from diffusion tensor imaging (DTI), which may be influenced by methodological factors related to signal processing, MRI scanners and biophysical properties of neuroanatomical regions. In this study, we...
متن کاملFiber Pathways of Attention Subnetworks Revealed with Tract-Based Spatial Statistics (TBSS) and Probabilistic Tractography
It has been widely accepted that attention can be divided into three subnetworks - alerting, orienting and executive control (EC), and the subnetworks of attention are linked to distinct brain regions. However, the association between specific white matter fibers and the subnetworks of attention is not clear enough. Using diffusion tensor imaging (DTI), the white matter connectivity related to ...
متن کاملA Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data
Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014